\[1)\ f(x) = \frac{3x + 2}{x}\]
\[\lim_{x \rightarrow \infty}\frac{3x + 2}{x} = \lim_{x \rightarrow \infty}\left( 3 + \frac{2}{x} \right) = 3.\]
\[2)\ f(x) = \frac{5x - 4}{x + 1}\]
\[\lim_{x \rightarrow \infty}\frac{5x - 4}{x + 1} = \lim_{x \rightarrow \infty}\frac{5 - \frac{4}{x}}{1 + \frac{1}{x}} = 5.\]
\[3)\ f(x) = \frac{1 - x}{3x + 2}\]
\[\lim_{x \rightarrow \infty}\frac{1 - x}{3x + 2} = \lim_{x \rightarrow \infty}\frac{\frac{1}{x} - 1}{3 + \frac{2}{x}} = - \frac{1}{3}.\]