\[Арифметическая\ прогрессия\ \left\{ a_{k} \right\}:\]
\[\lim_{x \rightarrow \infty}{\frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} + \ldots + \frac{1}{a_{n}a_{n + 1}}}.\]
\[1)\ x_{n} = \frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} + \frac{1}{a_{n}a_{n + 1}} =\]
\[= \frac{1}{d}\left( \frac{1}{a_{1}} - \frac{1}{a_{1} + nd} \right).\]
\[2)\ \lim_{x \rightarrow \infty}{\frac{1}{d}\left( \frac{1}{a_{1}} - \frac{1}{a_{1} + nd} \right)} =\]
\[= \frac{1}{d} \bullet \left( \frac{1}{a_{1}} - 0 \right) = \frac{1}{da_{1}}.\]
\[Ответ:\ \ \frac{1}{da_{1}}.\]