\[1)\sin x \geq \cos x\]
\[- \frac{\pi}{2} + 2\pi n \leq x \leq \frac{\pi}{2} + 2\pi n:\]
\[tg\ x \geq 1\]
\[\frac{\pi}{4} + \pi n \leq x < \frac{\pi}{2} + \pi n\]
\[\frac{\pi}{4} + 2\pi n \leq x \leq \frac{\pi}{2} + 2\pi n.\]
\[\frac{\pi}{2} + 2\pi n \leq x \leq \frac{3\pi}{2} + 2\pi n:\]
\[tg\ x \leq 1;\]
\[- \frac{\pi}{2} + \pi n < x \leq \frac{\pi}{4} + \pi n\]
\[\frac{\pi}{2} + 2\pi n \leq x \leq \frac{5\pi}{4} + 2\pi n.\]
\[Ответ:\ \ \left\lbrack \frac{\pi}{4} + 2\pi n;\ \frac{5\pi}{4} + 2\pi n \right\rbrack.\]
\[2)\ tg\ x > \sin x\]
\[2\pi n < x < \pi + 2\pi n:\]
\[\frac{1}{\cos x} > 0;\ \ \cos x > 0;\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n\]
\[2\pi n < x < \frac{\pi}{2} + 2\pi n.\]
\[- \pi + 2\pi n < x < 2\pi n:\]
\[\frac{1}{\cos x} < 0;\ \ \ \cos x < 0;\]
\[\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n\]
\[\pi + 2\pi n < x < \frac{3\pi}{2} + 2\pi n.\]
\[Ответ:\ \ \left( \pi n;\ \frac{\pi}{2} + \pi n \right).\]