\[1)\ y = 2\sin\left( \frac{x}{2} + \frac{\pi}{3} \right) - 2\]
\[2)\ y = \cos x - \sqrt{\cos^{2}x}\]
\[y = \cos x - \left| \cos x \right|.\]
\[\cos x \geq 0:\]
\[y = \cos x - \cos x = 0.\]
\[\cos x < 0:\]
\[y = \cos x + \cos x = 2\cos x.\]
\[3)\ y = \cos|x|\]
\[4)\ y = - \sin x\]
\[5)\ y = \sin x + \left| \sin x \right|\]
\[\sin x \geq 0:\]
\[y = \sin x + \sin x = 2\sin x.\]
\[\sin x < 0:\]
\[y = \sin x - \sin x = 0.\]
\[6)\ y = 2^{\sin x}\]
\[\sin x = 0:\]
\[y = 2^{0} = 1.\]
\[\sin x = 1:\]
\[y = 2^{1} = 2.\]
\[\sin x = - 1:\]
\[y = 2^{- 1} = 0,5.\]