\[y = 1,5 - 2\sin^{2}\frac{x}{2}\]
\[y = 1,5 - \left( 1 - \cos x \right)\]
\[y = \frac{1}{2} + \cos x.\]
\[Положительные\ значения:\]
\[\frac{1}{2} + \cos x > 0\]
\[\cos x > - \frac{1}{2}\]
\[- \frac{2\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n.\]
\[Ответ:\left( - \frac{2\pi}{3} + 2\pi n;\ \frac{2\pi}{3} + 2\pi n \right).\]