\[1)\ y = \sin x + x\]
\[x \in R.\]
\[y( - x) = \sin( - x) + ( - x);\]
\[y( - x) = - \sin x - x = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[2)\ y = \cos\left( x - \frac{\pi}{2} \right) - x^{2}\]
\[y = \sin x - x^{2}\]
\[x \in R.\]
\[y( - x) = \sin( - x) - ( - x)^{2};\]
\[y( - x) = - \sin x - x^{2}.\]
\[Ответ:\ \ ни\ четная,\ ни\ нечетная.\]
\[3)\ y = \ 3 - \cos\left( \frac{\pi}{2} + x \right)\sin(\pi - x) =\]
\[= 3 + \sin x \bullet \sin x = 3 + \sin^{2}x;\]
\[x \in R.\]
\[y( - x) = 3 + \sin^{2}( - x);\]
\[y( - x) = 3 + \sin^{2}x = y(x).\]
\[Ответ:\ \ четная.\]
\[4)\ y = \frac{1}{2}\cos{2x}\sin\left( \frac{3\pi}{2} - 2x \right) + 3 =\]
\[= - \frac{1}{2}\cos{2x} \bullet \cos{2x} + 3 =\]
\[= 3 - \frac{1}{2}\cos^{2}{2x};\]
\[x \in R.\]
\[y( - x) = 3 - \frac{1}{2}\cos^{2}( - 2x);\]
\[y( - x) = 1 - \frac{1}{2}\cos^{2}{2x} = y(x).\]
\[Ответ:\ \ четная.\]
\[5)\ y = x^{2} + \frac{1 + \cos x}{2}\]
\[x \in R.\]
\[y( - x) = ( - x)^{2} + \frac{1 + \cos( - x)}{2};\]
\[y( - x) = x^{2} + \frac{1 + \cos x}{2} = y(x).\]
\[Ответ:\ \ четная.\]