\[f(x) = x^{3} - 1,5x^{2} - 18x + \sqrt{3};\]
\[f^{'}(x) =\]
\[= \left( x^{3} \right)^{'} - 1,5\left( x^{2} \right)^{'} - \left( 18x - \sqrt{3} \right)^{'} =\]
\[= 3x^{2} - 1,5 \bullet 2x - 18 =\]
\[= 3x^{2} - 3x - 18;\]
\[2)\ Производная\ отрицательна:\]
\[3x^{2} - 3x - 18 < 0\]
\[x^{2} - x - 6 < 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\]
\[x_{2} = \frac{1 + 5}{2} = 3;\]
\[(x + 2)(x - 3) < 0\]
\[- 2 < x < 3.\]
\[Ответ:\ \ x \in ( - 2;\ 3).\]