\[f(x) = x^{2} + px + q;\text{\ \ \ }\]
\[y = 2x - 3.\]
\[1)\ Пересекаются\ в\ точке\ x = 1:\]
\[1^{2} + p \bullet 1 + q = 2 \bullet 1 - 3\]
\[1 + p + q = - 1\]
\[q = - 2 - p.\]
\[2)\ Вершина\ параболы:\]
\[x = - \frac{b}{2a} = - \frac{p}{2};\]
\[y = \frac{p^{2}}{4} - \frac{p^{2}}{2} + q = \frac{4q - p^{2}}{4}.\]
\[3)\ Расстояние\ до\ Ox:\]
\[d(p) = \left| \frac{4q - p^{2}}{4} \right| =\]
\[= \left| \frac{4( - 2 - p) - p^{2}}{4} \right| =\]
\[= \left| - \frac{8 + 4p + p^{2}}{4} \right| = \frac{p^{2} + 4p + 8}{4}.\ \]
\[4)\ d^{'}(p) = \frac{1}{4} \bullet (2p + 4) =\]
\[= \frac{1}{2} \bullet (p + 2).\]
\[5)\ Промежуток\ возрастания:\]
\[p + 2 \geq 0\]
\[p \geq - 2.\]
\[6)\ Точка\ минимума:\]
\[p = - 2;\]
\[q = - 2 + 2 = 0;\]
\[d = \frac{4 - 8 + 8}{4} = \frac{4}{4} = 1.\]
\(Ответ:\ \ p = - 2;\ q = 0;\ d = 1.\)