\[f(x) = 2x^{2} - 3x + 8;\]
\[f^{'}(x) = 2 \bullet 2x - 3 = 4x - 3;\]
\[f^{'}(a) = 4a - 3;\ \ \]
\[\ f(a) = 2a^{2} - 3a + 8;\]
\[y = 2a^{2} - 3a + 8 + (4a - 3)(x - a) =\]
\[= 2a^{2} - 3a + 8 + 4ax - 4a^{2} - 3x + 3a =\]
\[= - 2a^{2} + 4ax - 3x + 8.\]
\[2)\ Через\ начало\ координат:\]
\[0 = - 2a^{2} + 4a \bullet 0 - 3 \bullet 0 + 8\]
\[2a^{2} = 8\]
\[a^{2} = 4\]
\[a = \pm 2;\]
\[y( - 2) = 8 + 6 + 8 = 22;\]
\[y(2) = 8 - 6 + 8 = 10.\]
\[Ответ:\ \ ( - 2;\ 22);\ (2;\ 10).\]