\[A(3;\ - 1);\ \ \ D(4;\ - 1)\]
\[y = 1 - x^{2}\ \ на\ \lbrack - 1;\ 1\rbrack.\]
\[1)\ \text{AD} = 4 - 3 = 1.\]
\[2)\ Функция\ четная:\]
\[y( - x) = 1 - ( - x)^{2} =\]
\[= 1 - x^{2} = y(x).\]
\[3)\ x - абсцисса\ вершины\ \]
\[второго\ основания:\]
\[( - x) - абсцисса\ второй\ точки\ \]
\[этого\ основания;\]
\[BC = x - ( - x) = 2x - длина\ \]
\[второго\ основания;\]
\[h = y(x) - ( - 1) =\]
\[= \left( 1 - x^{2} \right) + 1 = 2 - x^{2}.\]
\[4)\ S(x) = \frac{1}{2}h \bullet (AD + BC) =\]
\[= \frac{1}{2}\left( 2 - x^{2} \right)(2x + 1) =\]
\[= \frac{1}{2}\left( 4x + 2 - 2x^{3} - x^{2} \right).\]
\[5)\ S^{'}(x) = \frac{1}{2}\left( 4 - 2 \bullet 3x^{2} - 2x \right) =\]
\[= 2 - 3x^{2} - x.\]
\[6)\ Промежуток\ возрастания:\]
\[2 - 3x^{2} - x \geq 0\]
\[3x^{2} + x - 2 \leq 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2 \bullet 3} = - 1;\]
\[x_{2} = \frac{- 1 + 5}{2 \bullet 3} = \frac{2}{3};\]
\[(x + 1)\left( x - \frac{2}{3} \right) \leq 0\]
\[- 1 \leq x \leq \frac{2}{3}.\]
\[7)\ Точка\ максимума:\]
\[S\left( \frac{2}{3} \right) =\]
\[= \frac{1}{2} \bullet \left( 4 \bullet \frac{2}{3} + 2 - 2 \bullet \frac{8}{27} - \frac{4}{9} \right) =\]
\[= \frac{1}{2} \bullet \frac{72 + 54 - 16 - 12}{27} = \frac{49}{27}.\]
\[Ответ:\ \ \frac{49}{27}.\]