\[y = x^{2};\ \ \ A\left( 2;\ \frac{1}{2} \right).\]
\[(a;\ b) - искомая\ точка:\]
\[b = a^{2}.\]
\[d(a) = \sqrt{(2 - a)^{2} + \left( \frac{1}{2} - b \right)^{2}} =\]
\[= \sqrt{(2 - a)^{2} + \left( 0,5 - a^{2} \right)^{2}} =\]
\[= \sqrt{4 - 4a + a^{2} + 0,25 - a^{2} + a^{4}} =\]
\[= \sqrt{a^{4} - 4a + 4,25};\]
\[d^{'}(x) = \frac{4a^{3} - 4 + 0}{2\sqrt{a^{4} - 4a + 4,25}} =\]
\[= \frac{2a^{3} - 2}{\sqrt{a^{4} - 4a + 4,25}}.\]
\[Промежуток\ возрастания:\]
\[2a^{3} - 2 \geq 0\]
\[a^{3} - 1 \geq 0\]
\[a^{3} \geq 1\]
\[a \geq 1.\]
\[Точка\ минимума:\]
\[a = 1;\]
\[b = 1^{2} = 1.\]
\[Ответ:\ \ (1;\ 1).\]