\[1)\ y = \sin x + \cos x\]
\[x \in R.\]
\[2)\ y = \sin x + tg\ x\]
\[x \neq \frac{\pi}{2} + \pi\text{n.}\]
\[3)\ y = \sqrt{\sin x}\]
\[\sin x \geq 0\]
\[2\pi n \leq x \leq \pi + 2\pi\text{n.}\]
\[4)\ y = \sqrt{\cos x}\]
\[\cos x \geq 0\]
\[- \frac{\pi}{2} + 2\pi n \leq x \leq \frac{\pi}{2} + 2\pi n.\]
\[5)\ y = \frac{2x}{2\sin x - 1}\]
\[2\sin x - 1 \neq 0\]
\[2\sin x \neq 1\]
\[\sin x \neq \frac{1}{2}\]
\[x \neq ( - 1)^{n} \bullet \frac{\pi}{6} + \pi\text{n.}\]
\[6)\ y = \frac{\cos x}{2\sin^{2}x - \sin x}\]
\[2\sin^{2}x - \sin x \neq 0\]
\[\sin x \bullet \left( 2\sin x - 1 \right) \neq 0\]
\[\sin x \neq 0\]
\[\sin x \neq \frac{1}{2}\]
\[x \neq \pi n,\ \ \ x \neq ( - 1)^{n} \bullet \frac{\pi}{6} + \pi\text{n.}\]