\[y = 2 - 3\sin x + 4\cos x;\]
\[на\ \left\lbrack - \frac{4\pi}{3};\ \frac{2\pi}{3} \right\rbrack:\]
\[1)\ y^{'}(x) =\]
\[= 0 - 3\cos x + 4\left( - \sin x \right) = 0;\]
\[4\sin x = - 3\cos x\ \ \ \ \ |\ :\cos x\]
\[4\ tg\ x = - 3\]
\[tg\ x = - \frac{3}{4}.\]
\[2)\ \cos(x) = \sqrt{\frac{1}{tg^{2}\ x + 1}} =\]
\[= \sqrt{\frac{1}{\frac{9}{16} + \frac{16}{16}}} = \sqrt{1\ :\frac{25}{16}} =\]
\[= \sqrt{\frac{16}{25}} = \pm \frac{4}{5};\]
\[\sin(x) = \sqrt{1 - \cos^{2}(x)} =\]
\[= \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{25}{25} - \frac{16}{25}} =\]
\[= \sqrt{\frac{9}{25}} = \mp \frac{3}{5}.\]
\[3)\ Полный\ период\ функции:\]
\[\frac{2\pi}{3} - \left( - \frac{4\pi}{3} \right) = \frac{2\pi}{3} + \frac{4\pi}{3} =\]
\[= \frac{6\pi}{3} = 2\pi.\]
\[4)\ y\left( x_{1} \right) = 2 - 3 \bullet \left( - \frac{3}{5} \right) + 4 \bullet \frac{4}{5} =\]
\[= 2 + \frac{9 + 16}{5} = 2 + \frac{25}{5} = 7;\]
\[y\left( x_{2} \right) = 2 - 3 \bullet \frac{3}{5} + 4 \bullet \left( - \frac{4}{5} \right) =\]
\[= 2 - \frac{9 + 16}{5} = 2 - \frac{25}{5} = - 3.\]
\[Ответ:\ - 3;\ 7.\]