\[1)\ y = \frac{x^{2} + 1}{x^{2} - 1}\]
\[= \frac{2x \bullet \left( x^{2} - 1 \right) - \left( x^{2} + 1 \right) \bullet 2x}{\left( x^{2} - 1 \right)^{2}} =\]
\[= \frac{2x \bullet \left( x^{2} - 1 - x^{2} - 1 \right)}{\left( x^{2} - 1 \right)^{2}} =\]
\[= \frac{2x \bullet ( - 2)}{\left( x^{2} - 1 \right)^{2}} = \frac{- 4x}{\left( x^{2} - 1 \right)^{2}}.\]
\[Промежуток\ возрастания:\]
\[- 4x \geq 0\]
\[x \leq 0.\]
\[Область\ определения:\]
\[x^{2} - 1 \neq 0\]
\[x^{2} \neq 1\]
\[x \neq \pm 1.\]
\[Возрастает\ на\ ( - \infty;\ - 1) \cup ( - 1;\ 0\rbrack;\]
\[Убывает\ на\ \lbrack 0;\ 1) \cup (1;\ + \infty).\]
\[2)\ y = \frac{x^{2} - 1}{x}\]
\[y^{'}(x) = \frac{\left( x^{2} - 1 \right)^{'} \bullet x - \left( x^{2} - 1 \right) \bullet (x)^{'}}{x^{2}} =\]
\[= \frac{2x \bullet x - \left( x^{2} - 1 \right) \bullet 1}{x^{2}} =\]
\[= \frac{x^{2} + 1}{x^{2}} > 0,\]
\[Область\ определения:\]
\[x \neq 0.\]
\[Возрастает\ на\ ( - \infty;\ 0) \cup (0;\ + \infty).\]