\[1)\ f(x) = x\ln{2x};\ \ \ x_{0} = 0,5:\]
\[f^{'}(x) = (x)^{'} \bullet \ln{2x} + x \bullet \left( \ln{2x} \right)^{'} =\]
\[= 1 \bullet \ln{2x} + x \bullet \frac{2}{2x} = \ln{2x} + 1;\]
\[f^{'}(0,5) = \ln(2 \bullet 0,5) + 1 =\]
\[= \ln 1 + 1 = 0 + 1 = 1;\]
\[f(0,5) = 0,5 \bullet \ln(2 \bullet 0,5) =\]
\[= 0,5 \bullet \ln 1 = 0,5 \bullet 0 = 0;\]
\[y = 0 + 1 \bullet (x - 0,5) = x - 0,5.\]
\[Ответ:\ \ y = x - 0,5.\]
\[2)\ f(x) = 2^{- x};\ \text{\ \ }x_{0} = 1:\ \]
\[f^{'}(x) = - 1 \bullet 2^{- x} \bullet \ln 2 = - \frac{\ln 2}{2^{x}};\]
\[f^{'}(1) = - \frac{\ln 2}{2^{1}} = - \frac{1}{2}\ln 2;\]
\[f(1) = 2^{- 1} = \frac{1}{2};\]
\[y = \frac{1}{2} - \frac{1}{2}\ln 2(x - 1) =\]
\[= \frac{1}{2}\left( 1 - x\ln 2 + \ln 2 \right).\]
\[Ответ:\ \ y = 0,5\left( 1 + \ln 2 - x\ln 2 \right).\]