\[1)\ y = - x^{4} + 4x^{2} - 5\]
\[Функция\ четная:\]
\[y( - x) = - ( - x)^{4} + 4( - x)^{2} - 5 =\]
\[= - x^{4} + 4x^{2} - 5 = y(x).\]
\[Производная\ функции:\]
\[y^{'}(x) = - \left( x^{4} \right)^{'} + 4\left( x^{2} \right)^{'} - (5)^{'} =\]
\[= - 4x^{3} + 4 \bullet 2x - 0 = 4\left( 2x - x^{3} \right).\]
\[Промежуток\ возрастания:\]
\[2x - x^{3} \geq 0\]
\[x\left( 2 - x^{2} \right) \geq 0\]
\[\left( x + \sqrt{2} \right)x\left( x - \sqrt{2} \right) \leq 0\]
\[x \leq - \sqrt{2};\ \ \ 0 \leq x \leq \sqrt{2}.\]
\[Точки\ экстремума:\]
\[x_{1} = 0;\ \text{\ \ }x_{2} = \sqrt{2};\]
\[y_{1} = - 5;\ \ \ \]
\[y_{2} = - 4 + 8 - 5 = - 1.\]
\[2)\ y = x^{3} - 4x\]
\[Функция\ нечетная:\]
\[y( - x) = ( - x)^{3} - 4 \bullet ( - x) =\]
\[= - x^{3} + 4x = - y(x).\]
\[Производная\ функции:\]
\[y^{'}(x) = \left( x^{3} \right)^{'} - (4x)^{'} = 3x^{2} - 4.\]
\[Промежуток\ возрастания:\]
\[3x^{2} - 4 \geq 0\]
\[\left( \sqrt{3}x + 2 \right)\left( \sqrt{3}x - 2 \right) \geq 0\]
\[x \leq - \frac{2}{\sqrt{3}};\ \ \ x \geq \frac{2}{\sqrt{3}}.\]
\[Точки\ экстремума:\]
\[x = \frac{2}{\sqrt{3}};\ \ \]
\[y = \frac{8}{3\sqrt{3}} - \frac{8}{\sqrt{3}} = \frac{8 - 24}{3\sqrt{3}} = - \frac{16}{3\sqrt{3}}.\]