\[\mathbf{1.\ }\]
\[F(x) = e^{2x} + x^{3} - \cos x;\]
\[f(x) = 2e^{2x} + 3x^{2} + \sin x;\]
\[F^{'}(x) =\]
\[= 2 \bullet e^{2x} + 3x^{2} - \left( - \sin x \right) =\]
\[= 2e^{2x} + 3x^{2} + \sin x.\]
\[Что\ и\ требовалось\ доказать.\]
\[\mathbf{2}\text{.\ }\]
\[f(x) = 3x^{2} + 2x - 3;\text{\ M}(1;\ - 2):\]
\[F(x) = 3 \bullet \frac{x^{3}}{3} + 2 \bullet \frac{x^{2}}{2} - 3x + C =\]
\[= x^{3} + x^{2} - 3x + C;\]
\[F(1) = 1 + 1 - 3 + C = - 2;\]
\[C = - 1.\]
\[Ответ:\ \ \]
\[F(x) = x^{3} + x^{2} - 3x - 1.\]
\[\mathbf{3}\text{.\ }\]
\[1)\ \int_{1}^{2}{2x^{2}\text{dx}} = \left. \ 2 \bullet \frac{x^{3}}{3} \right|_{1}^{2} =\]
\[= \frac{2}{3} \bullet 8 - \frac{2}{3} \bullet 1 = \frac{2}{3} \bullet 7 = \frac{14}{3};\]
\[2)\ \int_{2}^{3}\frac{\text{dx}}{x^{3}} = \left. \ \frac{x^{- 2}}{- 2} \right|_{2}^{3} = \left. \ - \frac{1}{2x^{2}} \right|_{2}^{3} =\]
\[= - \frac{1}{18} + \frac{1}{8} = \frac{5}{72};\]
\[3)\ \int_{0}^{\frac{\pi}{2}}{\cos{2x}\text{dx}} = \left. \ \frac{1}{2}\sin{2x} \right|_{0}^{\frac{\pi}{2}} =\]
\[= \frac{1}{2}\sin\pi - \frac{1}{2}\sin 0 = 0;\]
\[4)\ \int_{\frac{\pi}{2}}^{\pi}{\sin x\text{dx}} = \left. \ - \cos x \right|_{\frac{\pi}{2}}^{\pi} =\]
\[= - \cos\pi + \cos\frac{\pi}{2} = 1.\]
\[\mathbf{4}\text{.\ }\]
\[y = x^{2} + x - 6;\text{\ \ \ y} = 0:\]
\[x^{2} + x - 6 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2} = - 3;\]
\[x_{2} = \frac{- 1 + 5}{2} = 2;\]
\[S = \int_{- 3}^{2}{\left( x^{2} + x - 6 \right)\text{dx}} =\]
\[= \left. \ \left( \frac{x^{3}}{3} + \frac{x^{2}}{2} - 6x \right) \right|_{- 3}^{2} =\]
\[= \left( \frac{8}{3} + \frac{4}{2} - 12 \right) - \left( - \frac{27}{3} + \frac{9}{2} + 18 \right) =\]
\[= \frac{8}{3} + 2 - 12 + 9 - \frac{9}{2} - 18 =\]
\[= - 20\frac{5}{6}.\]
\[Ответ:\ \ 20\frac{5}{6}.\]