\[\boxed{\mathbf{979}\mathbf{.}}\]
\[h - высота\ кузова;\ \]
\[\text{a\ }и\ b - его\ длина\ и\ ширина:\]
\[\frac{a}{b} = \frac{5}{2} = k \rightarrow \ a = 5k;\ \ \ b = 2k.\]
\[S_{пов} = ab + 2ah + 2bh =\]
\[= 10k^{2} + 10kh + 4kh =\]
\[= 10k^{2} + 14kh = 2S;\]
\[14kh = 2S - 10k^{2}\]
\[h = \frac{2S - 10k^{2}}{14k}.\]
\[V(k) = abh =\]
\[= 5k \bullet 2k \bullet \frac{2S - 10k^{2}}{14k} =\]
\[= \frac{20Sk^{2} - 100k^{4}}{14k} =\]
\[= \frac{5}{7}\left( 2Sk - 10k^{3} \right).\]
\[V^{'}(k) =\]
\[= \frac{5}{7} \bullet \left( 2S \bullet (k)^{'} - 10 \bullet \left( k^{3} \right)^{'} \right);\]
\[V^{'}(k) = \frac{5}{7} \bullet \left( 2S - 10 \bullet 3k^{2} \right) =\]
\[= 10 \bullet \frac{S - 15k^{2}}{7}.\]
\[Промежуток\ возрастания:\]
\[S - 15k^{2} > 0\]
\[15k^{2} < S\]
\[k^{2} < \frac{S}{15}\]
\[- \sqrt{\frac{S}{15}} < k < \sqrt{\frac{S}{15}}.\]
\[k = \sqrt{\frac{S}{15}} - точка\ максимума;\]
\[a = 5\sqrt{\frac{S}{15}};\ \ \ \ \text{\ \ }b = 2\sqrt{\frac{S}{15}}.\]
\[Ответ:\ \ 5\sqrt{\frac{S}{15}}\ и\ \ 2\sqrt{\frac{S}{15}}.\]