\[\boxed{\mathbf{960}\mathbf{.}}\]
\[1)\ y = \frac{x^{3}}{3} + 3x^{2}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = \frac{1}{3} \bullet \left( x^{3} \right)^{'} + 3 \bullet \left( x^{2} \right)^{'};\]
\[y^{'}(x) = \frac{1}{3} \bullet 3x^{2} + 3 \bullet 2x =\]
\[= x^{2} + 6x.\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[x^{2} + 6x = 0\]
\[(x + 6) \bullet x = 0\]
\[x_{1} = - 6;\ x_{2} = 0.\]
\[\textbf{г)}\ f( - 6) = \frac{( - 6)^{3}}{3} + 3 \bullet ( - 6)^{2} =\]
\[= - \frac{216}{3} + 3 \bullet 36 = - 72 + 108 =\]
\[= 36;\]
\[f(0) = \frac{0^{3}}{3} + 3 \bullet 0^{2} = 0.\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - \infty;\ - 6) \cup (0;\ + \infty)\ и\ \]
\[убывает\ на\ ( - 6;\ 0);\]
\[x = 0 - точка\ минимума;\ \ \]
\[x = - 6 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < - 6\] | \[- 6\] | \[- 6 < x < 0\] | \[0\] | \[x > 0\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\nearrow\] | \[36\] | \[\searrow\] | \[0\] | \[\nearrow\] |
\[2)\ y = - \frac{x^{4}}{4} + x^{2}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = - \frac{1}{4} \bullet \left( x^{4} \right)^{'} + \left( x^{2} \right)^{'};\]
\[y^{'}(x) = - \frac{1}{4} \bullet 4x^{3} + 2x =\]
\[= - x^{3} + 2x;\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[- x^{3} + 2x = 0\]
\[x \bullet \left( 2 - x^{2} \right) = 0\]
\[\left( \sqrt{2} + x \right) \bullet x \bullet \left( \sqrt{2} - x \right) = 0\]
\[x_{1} = - \sqrt{2},\ \ \ x_{2} = 0,\ \ \ x_{3} = \sqrt{2}.\]
\[\textbf{г)}\ f\left( \pm \sqrt{2} \right) =\]
\[= - \frac{\left( \pm \sqrt{2} \right)^{4}}{4} + \left( \pm \sqrt{2} \right)^{2} =\]
\[= - \frac{4}{4} + 2 = - 1 + 2 = 1;\]
\[f(0) = - \frac{0^{4}}{4} + 0^{2} = 0;\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ \left( - \infty;\ - \sqrt{2} \right) \cup \left( 0;\ \sqrt{2} \right);\ \]
\[убывает\ \]
\[на\ \left( - \sqrt{2};\ 0 \right) \cup \left( \sqrt{2};\ + \infty \right);\]
\[x = 0 - точка\ минимума;\ \]
\[x = \pm \sqrt{2} - точки\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < - \sqrt{2}\] | \[- \sqrt{2}\] | \[- \sqrt{2} < x < 0\] | \[0\] | \[0 < x < \sqrt{2}\] | \[\sqrt{2}\] | \[x > \sqrt{2}\] |
---|---|---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] | \[0\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[1\] | \[\searrow\] | \[0\] | \[\nearrow\] | \[1\] | \[\searrow\] |