\[\boxed{\mathbf{951}\mathbf{.}}\]
\[y = x^{2};\text{\ \ \ \ }A(2;\ 0,5).\]
\[a\ и\ b - абсцисса\ и\ ордината\ \]
\[искомой\ точки:\]
\[a = x\ \ и\ \ b = y(x) = x^{2};\]
\[S(x) = \sqrt{(2 - a)^{2} + (b - 0,5)^{2}} =\]
\[= \sqrt{(2 - x)^{2} + \left( x^{2} - 0,5 \right)^{2}};\]
\[Производная\ функции:\]
\[\ u = x^{4} - 4x + 4,25;\ \ \ \ \]
\[S(u) = \sqrt{u}:\]
\[S^{'}(x) =\]
\[= \left( x^{4} - 4x + 4,25 \right)^{'} \bullet \left( \sqrt{u} \right)^{'};\]
\[S^{'}(x) = \left( 4x^{3} - 4 \right) \bullet \frac{1}{2\sqrt{u}} =\]
\[= 2 \bullet \frac{x^{3} - 1}{\sqrt{x^{4} - 4x + 4,25}}.\]
\[Промежуток\ возрастания:\]
\[x^{3} - 1 > 0\]
\[x^{3} > 1\]
\[x > 1.\]
\[a = x = 1 - точка\ минимума;\]
\[b = x^{2} = 1.\]
\[Ответ:\ \ (1;\ 1).\]