\[\boxed{\mathbf{946}\mathbf{.}}\]
\[1)\ f(x) = e^{3x} - 3x;\ ( - 1;\ 1)\]
\[f^{'}(x) = \left( e^{3x} \right)^{'} - (3x)^{'} =\]
\[= 3 \bullet e^{3x} - 3 = 3 \bullet \left( e^{3x} - 1 \right).\]
\[Промежуток\ возрастания:\]
\[e^{3x} - 1 > 0\]
\[e^{3x} > 1\]
\[e^{3x} > e^{0}\]
\[3x > 0\ \]
\[x > 0.\]
\[f(0) = e^{0} - 3 \bullet 0 = e^{0} = 1.\]
\[Ответ:\ \ y_{\min} = 1.\]
\[2)\ f(x) = \frac{1}{x} + \ln x;\ (0;\ 2)\]
\[f^{'}(x) = \left( \frac{1}{x} \right)^{'} + \left( \ln x \right)^{'} =\]
\[= - \frac{1}{x^{2}} + \frac{1}{x}.\]
\[Промежуток\ возрастания:\]
\[\frac{1}{x} - \frac{1}{x^{2}} > 0\]
\[x - 1 > 0\ \]
\[x > 1.\]
\[f(1) = \frac{1}{1} + \ln 1 = 1 + \ln e^{0} =\]
\[= 1 + 0 = 1.\]
\[Ответ:\ \ y_{\min} = 1.\]