\[\boxed{\mathbf{945}\mathbf{.}}\]
\[1)\ f(x) = 3\sqrt{x} - x\sqrt{x};\ (0;\ + \infty)\]
\[f^{'}(x) = 3 \bullet \left( \sqrt{x} \right)^{'} - \left( x^{\frac{3}{2}} \right)^{'} =\]
\[= 3 \bullet \frac{1}{2\sqrt{x}} - \frac{3}{2} \bullet x^{\frac{1}{2}} =\]
\[= \frac{3}{2} \bullet \left( \frac{1}{\sqrt{x}} - \sqrt{x} \right).\]
\[Промежуток\ возрастания:\]
\[\frac{1}{\sqrt{x}} - \sqrt{x} > 0\]
\[1 - x > 0\ \]
\[x < 1.\]
\[f(1) = 3 \bullet \sqrt{1} - 1 \bullet \sqrt{1} =\]
\[= 3 - 1 = 2.\]
\[Ответ:\ \ y_{\max} = 2.\]
\[2)\ f(x) = 3x - 2x\sqrt{x};\ \ \ (0;\ + \infty)\]
\[f^{'}(x) = (3x)^{'} - 2 \bullet \left( x^{\frac{3}{2}} \right)^{'} =\]
\[= 3 - 2 \bullet \frac{3}{2} \bullet x^{\frac{1}{2}} = 3 \bullet \left( 1 - \sqrt{x} \right).\]
\[Промежуток\ возрастания:\]
\[1 - \sqrt{x} > 0\]
\[\sqrt{x} < 1\ \]
\[x < 1.\]
\[f(1) = 3 \bullet 1 - 2 \bullet 1 \bullet \sqrt{1} =\]
\[= 3 - 2 = 1.\]
\[Ответ:\ \ y_{\max} = 1.\]