\[\boxed{\mathbf{918}\mathbf{.}}\]
\[1)\ y = \sqrt{2 - 3x^{2}}\]
\[Пусть\ u = 2 - 3x^{2};\ y(u) = \sqrt{u}:\]
\[y^{'}(x) = \left( 2 - 3x^{2} \right)^{'} \bullet \left( \sqrt{u} \right)^{'};\]
\[y^{'}(x) = ( - 3 \bullet 2x) \bullet \frac{1}{2\sqrt{u}} =\]
\[= - \frac{3x}{\sqrt{2 - 3x^{2}}}.\]
\[Точки\ экстремума:\]
\[- 3x = 0\ \]
\[x = 0.\]
\[Выражение\ имеет\ смысл\ при:\]
\[2 - 3x^{2} \geq 0\]
\[3x^{2} \leq 2\]
\[x^{2} \leq \frac{2}{3}\]
\[- \frac{\sqrt{6}}{3} < x < \frac{\sqrt{6}}{3}.\]
\[Ответ:\ \ x_{1} = - \frac{\sqrt{6}}{3};\ \ x_{2} = 0;\ \ \]
\[x_{3} = \frac{\sqrt{6}}{3}.\]
\[2)\ y = \sqrt{x^{3} - 3x}\]
\[Пусть\ u = x^{3} - 3x;\ \ y(u) = \sqrt{u}:\]
\[y^{'}(x) = \left( x^{3} - 3x \right)^{'} \bullet \left( \sqrt{u} \right);\]
\[y^{'}(x) = \left( 3x^{2} - 3 \right) \bullet \frac{1}{2\sqrt{u}} =\]
\[= \frac{3}{2} \bullet \frac{x^{2} - 1}{\sqrt{x^{3} - 3x}}.\]
\[Точки\ экстремума:\]
\[x^{2} - 1 = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x^{3} - 3x \geq 0\]
\[x \bullet \left( x^{2} - 3 \right) \geq 0\]
\[\left( x + \sqrt{3} \right) \bullet x \bullet \left( x - \sqrt{3} \right) \geq 0\]
\[- \sqrt{3} \leq x \leq 0\ или\ x \geq \sqrt{3}.\]
\[Ответ:\ \ x_{1} = - \sqrt{3};\ \ x_{2} = - 1;\ \ \]
\[x_{3} = 0;\ \ x_{4} = \sqrt{3}.\]
\[3)\ y = |x - 1|\]
\[y^{'}(x) = \pm (x - 1)^{'} = \pm (1 - 0) =\]
\[= \pm 1.\]
\[Точка\ излома\ графика:\]
\[x - 1 = 0\ \]
\[x = 1.\]
\[Ответ:\ \ x = 1.\]
\[4)\ y = x^{2} - |x| - 2\]
\[y^{'}(x) = \left( x^{2} \right)^{'} \pm (x)^{'} - (2)^{'} =\]
\[= - 2x \pm 1.\]
\[Точки\ экстремума:\]
\[- 2x \pm 1 = 0\]
\[- 2x = \pm 1\]
\[x = \pm \frac{1}{2}.\]
\[Точка\ излома\ графика:\]
\[x = 0.\]
\[Ответ:\ \ x_{1} = - \frac{1}{2};\ \ x_{2} = 0;\ \ \]
\[x_{3} = \frac{1}{2}.\]