\[\boxed{\mathbf{908}\mathbf{.}}\]
\[y = x^{3} - 2x^{2} + ax\]
\[y^{'}(x) =\]
\[= \left( x^{3} \right)^{'} - 2 \bullet \left( x^{2} \right)^{'} + a \bullet (x)^{'};\]
\[y^{'}(x) = 3x^{2} - 2 \bullet 2x + a =\]
\[= 3x^{2} - 4x + a.\]
\[Функция\ возрастает\ на\ всей\ \]
\[числовой\ прямой:\]
\[D = 4^{2} - 4 \bullet 3 \bullet a = 16 - 12a =\]
\[= 4 \bullet (4 - 3a) \leq 0;\]
\[4 - 3a \leq 0\]
\[3a \geq 4\]
\[a \geq \frac{4}{3}.\]
\[Ответ:\ \ a \geq \frac{4}{3}.\]