\[\boxed{\mathbf{895}\mathbf{.}}\]
\[f(x) = x \bullet \ln x\]
\[f^{'}(x) = (x)^{'} \bullet \ln x + x \bullet \left( \ln x \right)^{'} =\]
\[= 1 \bullet \ln x + x \bullet \frac{1}{x} = \ln x + 1\]
\[Параллельна\ оси\ абсцисс:\]
\[\ln x + 1 = 0\]
\[\ln x = - 1\]
\[\ln x = \ln e^{- 1}\]
\[x = \frac{1}{e}.\]
\[Расстояние\ до\ начала\ координат:\]
\[s = \sqrt{0^{2} + \left( \frac{1}{e} \right)^{2}} = \sqrt{\left( \frac{1}{e} \right)^{2}} = \frac{1}{e}.\]
\[Ответ:\ \ \frac{1}{e}.\]