\[\boxed{\mathbf{894}\mathbf{.}}\]
\[f(x) = \frac{4^{x} - 2^{x + 1}}{\ln 4}\]
\[f^{'}(x) = \frac{1}{\ln 4} \bullet \left( \left( 4^{x} \right)^{'} - \left( 2^{x + 1} \right)^{'} \right) =\]
\[= \frac{4^{x} \bullet \ln 4 - 2^{x + 1} \bullet \ln 2}{\ln 4} =\]
\[= \frac{4^{x} \bullet \ln 4 - 2^{x + 1} \bullet \frac{1}{2}\ln 4}{\ln 4} =\]
\[= 4^{x} - \frac{2^{x} \bullet 2^{1}}{2} = 2^{2x} - 2^{x}.\]
\[Параллельна\ прямой\ y = 2x + 5:\]
\[2^{2x} - 2^{x} = 2\]
\[2^{2x} - 2^{x} - 2 = 0\]
\[y = 2^{x}:\]
\[y^{2} - y - 2 = 0\]
\[D = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2} = - 1\ \]
\[y_{2} = \frac{1 + 3}{2} = 2\]
\[1)\ 2^{x} = - 1\]
\[корней\ нет.\]
\[2)\ 2^{x} = 2\]
\[2^{x} = 2^{1}\]
\[x = 1.\]
\[f(1) = \frac{4^{1} - 2^{1 + 1}}{\ln 4} = \frac{4 - 2^{2}}{\ln 4} =\]
\[= \frac{0}{\ln 4} = 0.\]
\[Ответ:\ \ (1\ 0).\]