Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 883

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 883

\[\boxed{\mathbf{883}\mathbf{.}}\]

\[1)\ f(x) = 2^{x} + 2^{- x}\]

\[f^{'}(x) = \left( 2^{x} \right)^{'} + \left( 2^{- x} \right)^{'} =\]

\[= 2^{x} \bullet \ln 2 - 2^{- x} \bullet \ln 2 =\]

\[= \ln 2 \bullet \left( 2^{x} - 2^{- x} \right)\]

\[Равна\ нулю\ при:\]

\[2^{x} - 2^{- x} = 0\]

\[2^{x} = 2^{- x}\]

\[x = - x\]

\[x = 0.\]

\[Положительна\ при:\]

\[2^{x} - 2^{- x} > 0\]

\[2^{x} > 2^{- x}\]

\[x > 0.\]

\[Отрицательна\ при:\]

\[2^{x} - 2^{- x} < 0\]

\[2^{x} < 2^{- x}\]

\[x < 0.\]

\[2)\ f(x) = 3^{2x} - 2x \bullet \ln 3\]

\[f^{'}(x) = \left( 3^{2x} \right)^{'} - \ln 3 \bullet (2x)^{'} =\]

\[= 2 \bullet 3^{2x} \bullet \ln 3 - \ln 3 \bullet 2 =\]

\[= 2 \bullet \ln 3 \bullet \left( 3^{2x} - 1 \right)\]

\[Равна\ нулю\ при:\]

\[3^{2x} - 1 = 0\]

\[3^{2x} = 1\]

\[3^{2x} = 3^{0}\]

\[2x = 0\]

\[x = 0.\]

\[Положительна\ при:\]

\[3^{2x} - 1 > 0\]

\[3^{2x} > 1\]

\[3^{2x} > 3^{0}\]

\[x > 0.\]

\[Отрицательна\ при:\]

\[3^{2x} - 1 < 0\]

\[3^{2x} < 1\]

\[3^{2x} < 3^{0}\]

\[x < 0.\]

\[3)\ f(x) = x + \ln{2x}\]

\[f^{'}(x) = (x)^{'} + \left( \ln{2x} \right)^{'} =\]

\[= 1 + \frac{2}{2x} = 1 + \frac{1}{x}\]

\[Имеет\ смысл\ при:\]

\[2x > 0\]

\[x > 0.\]

\[Равна\ нулю\ при:\]

\[1 + \frac{1}{x} = 0\]

\[x + 1 = 0\]

\[нет\ корней.\]

\[Положительна\ при:\]

\[1 + \frac{1}{x} > 0\]

\[x^{2} + x > 0\]

\[(x + 1) \bullet x > 0\]

\[x > 0.\]

\[Отрицательна\ при:\]

\[1 + \frac{1}{x} < 0\]

\[x^{2} + x < 0\]

\[(x + 1) \bullet x < 0\]

\[- 1 < x < 0\]

\[нет\ корней.\]

\[4)\ f(x) = x + \ln(2x + 1)\]

\[f^{'}(x) = (x)^{'} + \left( \ln(2x + 1) \right)^{'} =\]

\[= 1 + \frac{2}{2x + 1}\]

\[Имеет\ смысл\ при:\]

\[2x + 1 > 0\]

\[x > - \frac{1}{2}.\]

\[Равна\ нулю\ при:\]

\[1 + \frac{2}{2x + 1} = 0\]

\[2x + 1 + 2 = 0\]

\[2x + 3 = 0\]

\[нет\ корней.\]

\[Положительна\ при:\]

\[2x + 3 > 0\]

\[x > - \frac{3}{2}\]

\[x > - \frac{1}{2}.\]

\[Отрицательна\ при:\]

\[2x + 3 < 0\]

\[x < - \frac{3}{2}\]

\[нет\ корней.\]

\[5)\ f(x) = 6x - x\sqrt{x}\]

\[f^{'}(x) = (6x)^{'} - \left( x^{\frac{3}{2}} \right)^{'} =\]

\[= 6 - \frac{3}{2} \bullet x^{\frac{1}{2}} = 6 - \frac{3\sqrt{x}}{2}\]

\[Имеет\ смысл\ при:\]

\[x \geq 0.\]

\[Равна\ нулю\ при:\]

\[6 - \frac{3\sqrt{x}}{2} = 0\]

\[12 - 3\sqrt{x} = 0\]

\[4 - \sqrt{x} = 0\]

\[\sqrt{x} = 4\]

\[x = 16.\]

\[Положительна\ при:\]

\[4 - \sqrt{x} > 0\]

\[\sqrt{x} < 4\]

\[x < 16.\]

\[Отрицательна\ при:\]

\[4 - \sqrt{x} < 0\]

\[\sqrt{x} > 4\]

\[x > 16.\]

\[6)\ f(x) = (x + 1) \bullet \sqrt{x + 1} - 3x\]

\[f^{'}(x) = {(x + 1)^{\frac{3}{2}}}^{'} - (3x)^{'} =\]

\[= \frac{3}{2} \bullet (x + 1)^{\frac{1}{2}} - 3 =\]

\[= 3 \bullet \left( \frac{\sqrt{x + 1}}{2} - 1 \right)\]

\[Имеет\ смысл\ при:\]

\[x + 1 \geq 0\ \]

\[x \geq - 1.\]

\[Равна\ нулю\ при:\]

\[\frac{\sqrt{x + 1}}{2} - 1 = 0\]

\[\sqrt{x + 1} - 2 = 0\]

\[x + 1 = 4\]

\[x = 3.\]

\[Положительна\ при:\]

\[\sqrt{x + 1} - 2 > 0\]

\[x + 1 > 4\]

\[x > 3.\]

\[Отрицательна\ при:\]

\[\sqrt{x + 1} - 2 < 0\]

\[x + 1 < 4\]

\[x < 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам