\[\boxed{\mathbf{882}\mathbf{.}}\]
\[\textbf{а)}\ y = e^{- x}\]
\[y^{'}(x) = \left( e^{- x} \right)^{'} = - e^{- x}\]
\[y^{'}(0) = - e^{0} = - 1\]
\[Ответ:\ \ г.\]
\[\textbf{б)}\ y = \ln( - x)\]
\[y^{'}(x) = \left( \ln( - x) \right)^{'} = \frac{- 1}{- x} = \frac{1}{x}\]
\[y^{'}( - 1) = \frac{1}{- 1} = - 1\]
\[Ответ:\ \ а.\]
\[\textbf{в)}\ y = \sin{2x}\]
\[y^{'}(x) = \left( \sin{2x} \right)^{'} = 2\cos{2x}\]
\[2\cos{2x} = 0\]
\[\cos{2x} = 0\]
\[2x = \arccos 0 + \pi n\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ в.\]
\[\textbf{г)}\ y = 2\cos x\]
\[y^{'}(x) = 2 \bullet \left( \cos x \right)^{'} = - 2\sin x\]
\[- 2\sin x = 0\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \ б.\]