\[\boxed{\mathbf{86}\mathbf{.}}\]
\[1)\ \sqrt[3]{10}\text{\ \ }и\ \ \sqrt[5]{20}\]
\[\sqrt[3]{10} = \sqrt[{3 \bullet 5}]{10^{5}} = \sqrt[15]{100\ 000};\]
\[\sqrt[5]{20} = \sqrt[{5 \bullet 3}]{20^{3}} = \sqrt[15]{8000};\]
\[100\ 000 > 8000;\]
\[\sqrt[15]{100\ 000} > \sqrt[15]{8000};\]
\[\sqrt[3]{10} > \sqrt[5]{20}.\]
\[2)\ \sqrt[4]{5}\text{\ \ }и\ \ \sqrt[3]{7};\]
\[\sqrt[4]{5} = \sqrt[{4 \bullet 3}]{5^{3}} = \sqrt[12]{125};\]
\[\sqrt[3]{7} = \sqrt[{3 \bullet 4}]{7^{4}} = \sqrt[12]{2401};\]
\[125 < 2401;;\]
\[\sqrt[12]{125} < \sqrt[12]{2401};\]
\[\ \sqrt[4]{5} < \sqrt[3]{7}.\]
\[3)\ \sqrt{17}\text{\ \ }и\ \ \sqrt[3]{28};\]
\[\sqrt{17} = \sqrt[{2 \bullet 3}]{17^{3}} = \sqrt[6]{4913};\]
\[\sqrt[3]{28} = \sqrt[{3 \bullet 2}]{28^{2}} = \sqrt[6]{784};\]
\[4913 > 784;\]
\[\sqrt[6]{4913} > \sqrt[6]{784};\]
\[\sqrt{17} > \sqrt[3]{28}.\]
\[4)\ \sqrt[3]{13}\text{\ \ }и\ \ \sqrt[5]{23};\ \]
\[\sqrt[3]{13} = \sqrt[{3 \bullet 5}]{13^{5}} = \sqrt[15]{371\ 293};\]
\[\sqrt[5]{23} = \sqrt[{5 \bullet 3}]{23^{3}} = \sqrt[15]{12\ 167};\]
\[371\ 293 > 12\ 167;\]
\[\sqrt[15]{371\ 293} > \sqrt[15]{12\ 167};\]
\[\sqrt[3]{13} > \sqrt[5]{23}.\]