\[\boxed{\mathbf{851}\mathbf{.}}\]
\[1)\ f(x) = \frac{\sin x - \cos x}{x}\]
\[= \frac{x \bullet \cos x + x \bullet \sin x - \sin x + \cos x}{x^{2}} =\]
\[= \frac{\cos x \bullet (x + 1) + \sin x \bullet (x - 1)}{x^{2}}.\]
\[2)\ f(x) = \frac{1 - \sin{2x}}{\sin x - \cos x} =\]
\[= \frac{\cos^{2}x + \sin^{2}x - 2\sin x \bullet \cos x}{\sin x - \cos x} =\]
\[= \frac{\left( \cos x - \sin x \right)^{2}}{\sin x - \cos x} =\]
\[= \sin x - \cos x\]
\[f^{'}(x) = \left( \sin x \right)^{'} - \left( \cos x \right)^{'} =\]
\[= \cos x + \sin x.\]