\[\boxed{\mathbf{850}\mathbf{.}}\]
\[1)\ f(x) = \frac{e^{x} - e^{- x}}{x}\]
\[f^{'}(x) =\]
\[= \frac{\left( e^{x} - e^{- x} \right)^{'} \bullet x - (e^{x} - e^{- x}) \bullet (x)'}{x^{2}} =\]
\[= \frac{\left( e^{x} + e^{- x} \right) \bullet x - \left( e^{x} - e^{- x} \right) \bullet 1}{x^{2}} =\]
\[= \frac{xe^{x} + xe^{- x} - e^{x} + e^{- x}}{x^{2}} =\]
\[= \frac{e^{x}(x - 1) + e^{- x}(x + 1)}{x^{2}}.\]
\[2)\ f(x) = \frac{2^{x} - \log_{2}x}{\ln 2 \bullet x}\]
\[= \frac{2^{x} \bullet x \bullet \ln^{2}2 - 1 - 2^{x} \bullet \ln 2 + \ln x}{\left( \ln 2 \bullet x \right)^{2}} =\]
\[= \frac{2^{x} \bullet \ln 2 \bullet \left( x\ln 2 - 1 \right) + \ln x - 1}{x^{2} \bullet \ln^{2}2}.\]