\[\boxed{\mathbf{842}\mathbf{.}}\]
\[1)\ f(x) = e^{x} - x\]
\[f^{'}(x) = \left( e^{x} \right)^{'} - (x)^{'} = e^{x} - 1\]
\[e^{x} - 1 > 0\]
\[e^{x} > 1\]
\[x > 0.\]
\[Ответ:\ \ x \in (0\ + \infty).\]
\[2)\ f(x) = x\ln 2 - 2^{x}\]
\[f^{'}(x) = \ln 2 \bullet (x)^{'} - \left( 2^{x} \right)^{'} =\]
\[= \ln 2 - 2^{x} \bullet \ln 2\]
\[\ln 2 - 2^{x} \bullet \ln 2 > 0\]
\[\ln 2 \bullet \left( 1 - 2^{x} \right) > 0\]
\[1 - 2^{x} > 0\]
\[- 2^{x} > - 1\]
\[2^{x} < 1\]
\[x < 0.\]
\[Ответ:\ \ x \in ( - \infty\ 0).\]
\[3)\ f(x) = e^{x} \bullet x^{2}\]
\[f^{'}(x) = \left( e^{x} \right)^{'} \bullet x^{2} + e^{x} \bullet \left( x^{2} \right)^{'} =\]
\[= e^{x} \bullet x^{2} + e^{x} \bullet 2x\]
\[e^{x} \bullet x^{2} + e^{x} \bullet 2x > 0\]
\[e^{x} \bullet \left( x^{2} + 2x \right) > 0\]
\[x^{2} + 2x > 0\]
\[(x + 2) \bullet x > 0\]
\[x < - 2\ или\ x > 0.\]
\[Ответ:\ \ \]
\[x \in ( - \infty\ - 2) \cup (0\ + \infty).\]
\[4)\ f(x) = e^{x} \bullet \sqrt{x}\]
\[f^{'}(x) = \left( e^{x} \right)^{'} \bullet \sqrt{x} + e^{x} \bullet \left( \sqrt{x} \right)^{'} =\]
\[= e^{x} \bullet \sqrt{x} + e^{x} \bullet \frac{1}{2\sqrt{x}}\]
\[e^{x} \bullet \sqrt{x} + e^{x} \bullet \frac{1}{2\sqrt{x}} > 0\]
\[e^{x} \bullet \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) > 0\]
\[\sqrt{x} + \frac{1}{2\sqrt{x}} > 0\]
\[при\ любом\ x.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x > 0.\]
\[Ответ:\ \ x \in (0\ + \infty).\]