\[\boxed{\mathbf{841}\mathbf{.}}\]
\[1)\ f(x) = x - \cos x\]
\[f^{'}(x) = (x)^{'} - \left( \cos x \right)^{'} =\]
\[= 1 + \sin x\]
\[1 + \sin x = 0\]
\[\sin x = - 1\]
\[x = - \arcsin 1 + 2\pi n =\]
\[= - \frac{\pi}{2} + 2\pi n.\]
\[Ответ:\ \ - \frac{\pi}{2} + 2\pi n.\]
\[2)\ f(x) = \frac{1}{2}x - \sin x\]
\[f^{'}(x) = \left( \frac{1}{2}x \right)^{'} - \left( \sin x \right)^{'} =\]
\[= \frac{1}{2} - \cos x\]
\[\frac{1}{2} - \cos x = 0\]
\[\cos x = \frac{1}{2}\]
\[x = \pm \arccos\frac{1}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{3} + 2\pi n.\]
\[Ответ:\ \ \pm \frac{\pi}{3} + 2\pi n.\]
\[3)\ f(x) = 2\ln(x + 3) - x\]
\[f^{'}(x) = 2 \bullet \left( \ln(x + 3) \right)^{'} - (x)^{'} =\]
\[= \frac{2}{x + 3} - 1\]
\[\frac{2}{x + 3} - 1 = 0\]
\[\frac{2}{x + 3} = 1\]
\[x + 3 = 2\]
\[x = - 1.\]
\[Ответ:\ \ - 1.\]
\[4)\ f(x) = \ln(x + 1) - 2x\]
\[f^{'}(x) = \left( \ln(x + 1) \right)^{'} - (2x)^{'} =\]
\[= \frac{1}{x + 1} - 2\]
\[\frac{1}{x + 1} - 2 = 0\]
\[\frac{1}{x + 1} = 2\]
\[2(x + 1) = 1\]
\[2x + 2 = 1\]
\[2x = - 1\]
\[x = - 0,5.\]
\[Ответ:\ \ - 0,5.\]
\[5)\ f(x) = x^{2} + 2x - 12\ln x\]
\[f^{'}(x) =\]
\[= \left( x^{2} \right)^{'} + (2x)^{'} - 12 \bullet \left( \ln x \right)^{'} =\]
\[= 2x + 2 - \frac{12}{x}\]
\[2x + 2 - \frac{12}{x} = 0\]
\[2x^{2} + 2x - 12 = 0\]
\[x^{2} + x - 6 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2} = - 3\]
\[x_{2} = \frac{- 1 + 5}{2} = 2.\]
\[Ответ:\ \ - 3\ \ 2.\]
\[6)\ f(x) = x^{2} - 6x - 8\ln x\]
\[f^{'}(x) =\]
\[= \left( x^{2} \right)^{'} - (6x)^{'} - 8 \bullet \left( \ln x \right)^{'} =\]
\[= 2x - 6 - \frac{8}{x}\]
\[2x - 6 - \frac{8}{x} = 0\]
\[2x^{2} - 6x - 8 = 0\]
\[x^{2} - 3x - 4 = 0\]
\[D = 9 + 16 = 25\]
\[x_{1} = \frac{3 - 5}{2} = - 1\]
\[x_{2} = \frac{3 + 5}{2} = 4.\]
\[Ответ:\ \ - 1\ \ 4.\]