Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 83

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 83

\[\boxed{\mathbf{83}\mathbf{.}}\]

\[1)\ \left( a^{1 + \sqrt{2}} \right)^{1 - \sqrt{2}} =\]

\[= a^{\left( 1 + \sqrt{2} \right)\left( 1 - \sqrt{2} \right)} = a^{1^{2} - \left( \sqrt{2} \right)^{2}} =\]

\[= a^{1 - 2} = a^{- 1} = \frac{1}{a}\]

\[2)\ \left( m^{\frac{1 - \sqrt{5}}{1 + \sqrt{5}}} \right)^{- 3} \bullet m^{\frac{3\sqrt{5}}{2}} =\]

\[= m^{\frac{- 3\left( 1 - \sqrt{5} \right)}{1 + \sqrt{5}}} \bullet m^{\frac{3\sqrt{5}}{2}} =\]

\[= m^{\frac{3\sqrt{5} - 3}{1 + \sqrt{5}} + \frac{3\sqrt{5}}{2}} =\]

\[= m^{\frac{2\left( 3\sqrt{5} - 3 \right) + 3\sqrt{5}\left( 1 + \sqrt{5} \right)}{2\left( 1 + \sqrt{5} \right)}} =\]

\[= m^{\frac{6\sqrt{5} - 6 + 3\sqrt{5} + 15}{2\left( 1 + \sqrt{5} \right)}} = m^{\frac{9 + 9\sqrt{5}}{2\left( 1 + \sqrt{5} \right)}} =\]

\[= m^{\frac{9\left( 1 + \sqrt{5} \right)}{2\left( 1 + \sqrt{5} \right)}} = m^{\frac{9}{2}}\]

\[3)\ \left( a^{\sqrt[3]{2} + \sqrt[3]{3}} \right)^{\sqrt[3]{4} - \sqrt[3]{6} + \sqrt[3]{9}} =\]

\[= a^{\left( \sqrt[3]{2} + \sqrt[3]{3} \right)\left( \sqrt[3]{4} - \sqrt[3]{6} + \sqrt[3]{9} \right)} =\]

\[= a^{\sqrt[3]{8} - \sqrt[3]{12} + \sqrt[3]{18} + \sqrt[3]{12} - \sqrt[3]{18} + \sqrt[3]{27}} =\]

\[= a^{\sqrt[3]{8} + \sqrt[3]{27}} = a^{2 + 3} = a^{5}\]

\[4)\ \left( a^{\sqrt[3]{9} + \sqrt[3]{3} + 1} \right)^{1 - \sqrt[3]{3}} =\]

\[= a^{\left( \sqrt[3]{9} + \sqrt[3]{3} + 1 \right)\left( 1 - \sqrt[3]{3} \right)} =\]

\[= a^{\sqrt[3]{9} - \sqrt[3]{27} + \sqrt[3]{3} - \sqrt[3]{9} + 1 - \sqrt[3]{3}} =\]

\[= a^{- \sqrt[3]{27} + 1} = a^{- 3 + 1} = a^{- 2} = \frac{1}{a^{2}}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам