\[\boxed{\mathbf{823}\mathbf{.}}\]
\[f(x) = \frac{2x - 1}{x + 1}\]
\[f^{'}(x) =\]
\[= \frac{(2x - 1)^{'} \bullet (x + 1) - (2x - 1) \bullet (x + 1)^{'}}{(x + 1)^{2}} =\]
\[= \frac{2(x + 1) - (2x - 1) \bullet 1}{(x + 1)^{2}} =\]
\[= \frac{2x + 2 - 2x + 1}{(x + 1)^{2}} =\]
\[= \frac{3}{(x + 1)^{2}}\]
\[\frac{3}{(x + 1)^{2}} = 3\]
\[3(x + 1)^{2} = 3\]
\[x^{2} + 2x + 1 = 1\]
\[x^{2} + 2x = 0\]
\[x(x + 2) = 0\]
\[x_{1} = 0\ \text{\ \ }x_{2} = - 2.\]
\[Ответ:\ \ - 2\ \ 0.\]
\[\boxed{\mathbf{824}\mathbf{.}}\]
\[f(x) = (x - 1)(x - 2)(x - 3) = \ \]
\[= \left( x^{2} - 2x - x + 2 \right)(x - 3) =\]
\[= x^{3} - 3x^{2} + 2x - 3x^{2} + 9x - 6 =\]
\[= x^{3} - 6x^{2} + 11x - 6\]
\[f^{'}(x) =\]
\[= \left( x^{3} \right)^{'} - 6 \bullet \left( x^{2} \right)^{'} + (11x - 6)^{'} =\]
\[= 3x^{2} - 6 \bullet 2x + 11 =\]
\[= 3x^{2} - 12x + 11\]
\[3x^{2} - 12x + 11 = 11\]
\[3x^{2} - 12x = 0\]
\[3x \bullet (x - 4) = 0\]
\[x_{1} = 0\text{\ \ }x_{2} = 4.\]
\[Ответ:\ \ 0\ \ 4.\]