\[\boxed{\mathbf{822}\mathbf{.}}\]
\[f(x) = 2x^{3} - 3x^{2} - 12x + 1\]
\[f^{'}(x) =\]
\[= 2 \bullet \left( x^{3} \right)^{'} - 3 \bullet \left( x^{2} \right)^{'} - (12x - 1)^{'} =\]
\[= 2 \bullet 3x^{2} - 3 \bullet 2x - 12 =\]
\[= 6x^{2} - 6x - 12\]
\[6x^{2} - 6x - 12 = 0\]
\[x^{2} - x - 2 = 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{1 - 3}{2} = - 1\ \]
\[x_{2} = \frac{1 + 3}{2} = 2.\]
\[Ответ:\ \ - 1\ \ 2.\]