\[\boxed{\mathbf{819}\mathbf{.}}\]
\[1)\ f(x) = \frac{x^{2} - 4}{\sqrt{x}}\]
\[f^{'}(x) =\]
\[= \frac{\left( x^{2} - 4 \right)^{'} \bullet \sqrt{x} - \left( x^{2} - 4 \right) \bullet \left( \sqrt{x} \right)^{'}}{\left( \sqrt{x} \right)^{2}} =\]
\[= \frac{2x\sqrt{x} - \frac{x^{2} - 4}{2\sqrt{x}}}{x} =\]
\[= \frac{4x^{2} - x^{2} + 4}{2\sqrt{x}}\ :x = \frac{3x^{2} + 4}{2x\sqrt{x}}.\]
\[2)\ f(x) = \left( \sqrt[4]{x} + \frac{1}{\sqrt[4]{x}} \right)\left( \sqrt[4]{x} - \frac{1}{\sqrt[4]{x}} \right) =\]
\[= \sqrt{x} - \frac{1}{\sqrt{x}}\]
\[f^{'}(x) = \left( \sqrt{x} \right)^{'} - \left( x^{- \frac{1}{2}} \right)^{'} =\]
\[= \frac{1}{2\sqrt{x}} - \left( - \frac{1}{2} \right) \bullet x^{- \frac{3}{2}} =\]
\[= \frac{1}{2\sqrt{x}} + \frac{1}{2} \bullet x^{- 1} \bullet x^{- \frac{1}{2}} =\]
\[= \frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} = \frac{x + 1}{2x\sqrt{x}}.\]