\[\boxed{\mathbf{818}\mathbf{.}}\]
\[1)\ f(x) = \frac{x^{3} + x^{2} + 16}{x} =\]
\[= x^{2} + x + \frac{16}{x}\]
\[f^{'}(x) = \left( x^{2} \right)^{'} + (x)^{'} + 16 \bullet \left( \frac{1}{x} \right)^{'} =\]
\[= 2x + 1 - \frac{16}{x^{2}}\]
\[2)\ f(x) = \frac{x\sqrt[3]{x} + 3x + 18}{\sqrt[3]{x}} =\]
\[= x + 3x^{\frac{2}{3}} + 18x^{- \frac{1}{3}}\]
\[f^{'}(x) =\]
\[= \left( x^{'} \right) + 3 \bullet \left( x^{\frac{2}{3}} \right)^{'} + 18 \bullet \left( x^{- \frac{1}{3}} \right)^{'} =\]
\[= 1 + 3 \bullet \frac{2}{3} \bullet x^{- \frac{1}{3}} + 18 \bullet \left( - \frac{1}{3} \right) \bullet x^{- \frac{4}{3}} =\]
\[= 1 + 2 \bullet x^{- \frac{1}{3}} - 6 \bullet x^{- 1} \bullet x^{- \frac{1}{3}} =\]
\[= 1 + \frac{2}{\sqrt[3]{x}} - \frac{6}{x\sqrt[3]{x}}.\]