\[\boxed{\mathbf{812}\mathbf{.}}\]
\[y = x^{3} + 2x^{2} - 3x + 4\]
\[y^{'} =\]
\[= \left( x^{3} \right)^{'} + 2 \bullet \left( x^{2} \right)^{'} - (3x - 4)^{'} =\]
\[= 3x^{2} + 2 \bullet 2x - 3 =\]
\[= 3x^{2} + 4x - 3\]
\[y = 3x + 1:\]
\[3x^{2} + 4x - 3 = 3x + 1\]
\[3x^{2} + x - 4 = 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{- 1 - 7}{2 \bullet 3} = - \frac{8}{6} = - \frac{4}{3}\]
\[x_{2} = \frac{- 1 + 7}{2 \bullet 3} = 1.\]
\[Ответ:\ \ пересекаются.\]