\[\boxed{\mathbf{802}\mathbf{.}}\]
\[1)\ f(x) = x^{2} + x\]
\[f^{'}(x) = \left( x^{2} \right)^{'} + (x)^{'} = 2x + 1\]
\[2)\ f(x) = x^{2} - x\]
\[f^{'}(x) = \left( x^{2} \right)^{'} - (x)^{'} = 2x - 1\]
\[3)\ f(x) = 3x^{2}\]
\[f^{'}(x) = 3 \bullet \left( x^{2} \right)^{'} = 3 \bullet 2x = 6x\]
\[4)\ f(x) = - 17x^{2}\]
\[f^{'}(x) = - 17 \bullet \left( x^{2} \right)^{'} =\]
\[= - 17 \bullet 2x = - 34x\]
\[5)\ f(x) = - 4x^{3}\]
\[f^{'}(x) = - 4 \bullet \left( x^{3} \right)^{'} =\]
\[= - 4 \bullet 3x^{2} = - 12x^{2}\]
\[6)\ f(x) = 0,5x^{3}\]
\[f^{'}(x) = 0,5 \bullet \left( x^{3} \right)^{'} =\]
\[= 0,5 \bullet 3x^{2} = 1,5x^{2}\]
\[7)\ f(x) = 13x^{2} + 26\]
\[f^{'}(x) = 13 \bullet \left( x^{2} \right)^{'} + (26)^{'} =\]
\[= 13 \bullet 2x + 0 = 26x\]
\[8)\ f(x) = 8x^{2} - 16\]
\[f^{'}(x) = 8 \bullet \left( x^{2} \right)^{'} - (16)^{'} =\]
\[= 8 \bullet 2x - 0 = 16x.\]