\[\boxed{\mathbf{776}\mathbf{.}}\]
\[s(t) = 1 + 3t.\]
\[1)\ t_{1} = 1\ \ и\ \ t_{2} = 4:\]
\[v_{ср} = \frac{s\left( t_{2} \right) - s\left( t_{1} \right)}{t_{2} - t_{1}} =\]
\[= \frac{1 + 3 \bullet 4 - 1 - 3 \bullet 1}{4 - 1} =\]
\[= \frac{12 - 3}{3} = \frac{9}{3} = 3.\]
\[Ответ:\ \ 3.\]
\[2)\ t_{1} = 0,8\ \ и\ \ t_{2} = 1:\]
\[v_{ср} = \frac{s\left( t_{2} \right) - s\left( t_{1} \right)}{t_{2} - t_{1}} =\]
\[= \frac{1 + 3 \bullet 1 - 1 - 3 \bullet 0,8}{1 - 0,8} =\]
\[= \frac{3 - 2,4}{0,2} = \frac{0,6}{0,2} = 3.\]
\[Ответ:\ \ 3.\]