\[\boxed{\mathbf{775}\mathbf{.}}\]
\[1)\sin x \geq \cos x\]
\[\sin x - \cos x \geq 0\]
\[\sqrt{2} \bullet \left( \sin x \bullet \frac{1}{\sqrt{2}} - \cos x \bullet \frac{1}{\sqrt{2}} \right) \geq 0\]
\[\sin x \bullet \cos\frac{\pi}{4} - \cos x \bullet \sin\frac{\pi}{4} \geq 0\]
\[\sin\left( x - \frac{\pi}{4} \right) \geq 0\]
\[\arcsin 0 + 2\pi n \leq x - \frac{\pi}{4} \leq \pi - \arcsin 0 + 2\pi n\]
\[2\pi n \leq x - \frac{\pi}{4} \leq \pi + 2\pi n\]
\[Ответ:\ \ \]
\[\frac{\pi}{4} + 2\pi n \leq x \leq \frac{5\pi}{4} + 2\pi n.\]
\[2)\ tg\ x > \sin x\]
\[tg\ x - \sin x > 0\]
\[\frac{\sin x}{\cos x} - \sin x > 0\]
\[\frac{\sin x - \sin x \bullet \cos x}{\cos x} > 0\]
\[\frac{\sin x \bullet \left( 1 - \cos x \right)}{\cos x} > 0\]
\[tg\ x \bullet \left( 1 - \cos x \right) > 0\]
\[1)\ 1 - \cos x > 0\]
\[- \cos x > - 1\]
\[\cos x < 1\]
\[\cos x \neq 0\]
\[x \neq \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[2)\ tg\ x > 0\]
\[arctg\ 0 + \pi n < x < \frac{\pi}{2} + \pi n\]
\[Ответ:\ \ \pi n < x < \frac{\pi}{2} + \pi n.\]