\[\boxed{\mathbf{771}\mathbf{.}}\]
\[y = 1,5 - 2\sin^{2}\frac{x}{2} =\]
\[= 1,5 - \left( 1 - \cos x \right) = \frac{1}{2} + \cos x\]
\[\frac{1}{2} + \cos x > 0\]
\[\cos x > - \frac{1}{2}\]
\[- \arccos\left( - \frac{1}{2} \right) + 2\pi n < x < \arccos\left( - \frac{1}{2} \right) + 2\pi n\]
\[- \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n < x < \pi - \arccos\frac{1}{2} + 2\pi n\]
\[- \left( \pi - \frac{\pi}{3} \right) + 2\pi n < x < \pi - \frac{\pi}{3} + 2\pi n.\]
\[Ответ:\ \]
\[- \frac{2\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n.\]