\[\boxed{\mathbf{770}\mathbf{.}}\]
\[1)\ y = \cos^{2}x - \cos x\]
\[\cos^{2}x - \cos x = 0\]
\[\cos x \bullet \left( \cos x - 1 \right) = 0\]
\[Первое\ уравнение:\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos x - 1 = 0\]
\[\cos x = 1\]
\[x = \arccos 1 + 2\pi n = 2\pi n.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n\ \ 2\pi n.\]
\[2)\ y = \cos x - \cos{2x} - \sin{3x}\]
\[y = - 2 \bullet \sin\frac{x - 2x}{2} \bullet \sin\frac{x + 2x}{2} - \sin{3x}\]
\[y = 2\sin\frac{x}{2} \bullet \sin\frac{3x}{2} - 2\sin\frac{3x}{2} \bullet \cos\frac{3x}{2}\]
\[y = 2\sin\frac{3x}{2} \bullet \left( \sin\frac{x}{2} - \cos\frac{3x}{2} \right)\]
\[y = 2\sin\frac{3x}{2} \bullet \left( \sin\frac{x}{2} - \sin\left( \frac{\pi}{2} - \frac{3x}{2} \right) \right)\]
\[y = 2\sin\frac{3x}{2} \bullet 2 \bullet \sin\frac{\frac{x}{2} - \frac{\pi}{2} + \frac{3x}{2}}{2} \bullet \cos\frac{\frac{x}{2} + \frac{\pi}{2} - \frac{3x}{2}}{2}\]
\[y = 4\sin\frac{3x}{2} \bullet \sin\left( x - \frac{\pi}{4} \right) \bullet \cos\left( - \frac{x}{2} + \frac{\pi}{4} \right)\]
\[Первое\ уравнение:\]
\[\sin\frac{3x}{2} = 0\]
\[\frac{3x}{2} = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{2\pi n}{3}.\]
\[Второе\ уравнение:\]
\[\sin\left( x - \frac{\pi}{4} \right) = 0\]
\[x - \frac{\pi}{4} = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{\pi}{4} + \pi n.\]
\[Третье\ уравнение:\]
\[\cos\left( - \frac{x}{2} + \frac{\pi}{4} \right) = 0\]
\[\cos\left( \frac{x}{2} - \frac{\pi}{4} \right) = 0\]
\[\frac{x}{2} - \frac{\pi}{4} = \arccos 0 + \pi n\]
\[\frac{x}{2} - \frac{\pi}{4} = \frac{\pi}{2} + \pi n\]
\[\frac{x}{2} = \frac{\pi}{2} + \frac{\pi}{4} + \pi n\]
\[\frac{x}{2} = \frac{2\pi}{4} + \frac{\pi}{4} + \pi n\]
\[\frac{x}{2} = \frac{3\pi}{4} + \pi n\]
\[x = 2 \bullet \left( \frac{3\pi}{4} + \pi n \right)\]
\[x = \frac{3\pi}{2} + 2\pi n.\]
\[Ответ:\ \ \frac{2\pi n}{3}\text{\ \ }\frac{\pi}{4} + \pi n\ \ \frac{3\pi}{2} + 2\pi n.\]