\[\boxed{\mathbf{719}\mathbf{.}}\]
\[1)\ y = \left| \cos x \right|\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \cos x \leq 1;\]
\[0 \leq \left| \cos x \right| \leq 1;\]
\[E(y) = \lbrack 0;\ 1\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x)\]
\[\left| \cos(x + T) \right| = \left| \cos x \right|\]
\[\left\{ \begin{matrix} \cos(x + T) = \cos x\text{\ \ \ \ } \\ \cos(x + T) = - \cos x \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} T = 2\pi\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \cos(x + T) = \cos(x + \pi) \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} T = 2\pi \\ T = \pi\ \ \\ \end{matrix} \right.\ \]
\[T = \pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = \left| \cos( - x) \right| =\]
\[= \left| \cos x \right| = y(x).\]
\[\textbf{д)}\ \left| \cos x \right| = 0;\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[\left| \cos x \right| = 1\]
\[\cos x = \pm 1\]
\[x_{1} = \pi - \arccos 1 + 2\pi n =\]
\[= \pi + 2\pi n;\]
\[x_{2} = \arccos 1 + 2\pi n = 2\pi n;\]
\[x = \pi.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[x = \frac{\pi}{2} + \pi n.\]
\[2)\ y = 3 - 2\cos(x - 1)\ \]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \cos(x - 1) \leq 1;\]
\[- 2 \leq - 2\cos(x - 1) \leq 2;\]
\[1 \leq 3 - 2\cos(x - 1) \leq 5;\]
\[E(y) = \lbrack 1;\ 5\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[3 - 2\cos(x + T - 1) = 3 - 2\cos x;\]
\[T - 1 = 2\pi;\]
\[T = 2\pi + 1.\]
\[\textbf{г)}\ Ни\ четная,\ ни\ нечетная:\]
\[y( - x) = 3 - 2\cos( - x - 1) =\]
\[= 3 - 2\cos(x + 1).\]
\[\textbf{д)}\ 3 - 2\cos(x - 1) = 0\]
\[нет\ корней.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[3 - 2\cos(x - 1) = 5;\]
\[- 2\cos(x - 1) = 2;\]
\[\cos(x - 1) = - 1;\]
\[x - 1 = \pi - \arccos 1 + 2\pi n\]
\[x - 1 = \pi + 2\pi n;\]
\[x = \pi + 1 + 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[3 - 2\cos(x - 1) = 1;\]
\[- 2\cos(x - 1) = - 2;\]
\[\cos(x - 1) = 1;\]
\[x - 1 = \arccos 1 + 2\pi n = 2\pi n;\]
\[x = 1 + 2\pi n.\]