\[\boxed{\mathbf{705}\mathbf{.}}\]
\[1)\ y = \cos{\frac{2}{5}x}\ \]
\[y(x + T) = y(x)\]
\[\cos\left( \frac{2}{5} \bullet (x + T) \right) = \cos{\frac{2}{5}x}\]
\[\cos\left( \frac{2}{5}x + \frac{2}{5}T \right) = \cos{\frac{2}{5}x}\]
\[\frac{2}{5}T = 2\pi\]
\[T = 2\pi \bullet \frac{5}{2} = 5\pi.\]
\[Ответ:\ \ 5\pi.\]
\[2)\ y = \sin{\frac{3}{2}x}\]
\[y(x + T) = y(x)\]
\[\sin\left( \frac{3}{2} \bullet (x + T) \right) = \sin{\frac{3}{2}x}\]
\[\sin\left( \frac{3}{2}x + \frac{3}{2}T \right) = \sin{\frac{3}{2}x}\]
\[\frac{3}{2}T = 2\pi\]
\[T = 2\pi \bullet \frac{2}{3} = \frac{4\pi}{3}.\]
\[Ответ:\ \ \frac{4\pi}{3}.\]
\[3)\ y = tg\frac{x}{2}\]
\[y(x + T) = y(x)\]
\[\text{tg}\left( \frac{1}{2} \bullet (x + T) \right) = tg\frac{x}{2}\]
\[\text{tg}\left( \frac{x}{2} + \frac{1}{2}T \right) = tg\frac{x}{2}\]
\[\frac{1}{2}T = \pi\]
\[T = 2\pi.\]
\[Ответ:\ \ 2\pi.\]
\[4)\ y = \left| \sin x \right|\]
\[y(x + T) = y(x)\]
\[\left| \sin(x + T) \right| = \left| \sin x \right|\]
\[Первое\ уравнение:\]
\[\sin(x + T) = - \sin x\]
\[\sin(T + x) = \sin(\pi + x)\]
\[T = \pi.\]
\[Второе\ уравнение:\]
\[\sin(x + T) = \sin x\]
\[T = 2\pi.\]
\[Ответ:\ \ \pi.\]