\[\boxed{\mathbf{704}\mathbf{.}}\]
\[1)\ y = \frac{1 - \cos x}{1 + \cos x} = tg^{2}\frac{x}{2};\]
\[y( - x) = tg^{2}\ \left( - \frac{x}{2} \right) =\]
\[= - \left( \text{tg}\frac{x}{2} \right)^{2} = tg^{2}\frac{x}{2} = y(x).\]
\[Ответ:\ \ четная.\]
\[2)\ y = \frac{\sqrt{\sin^{2}x}}{1 + \cos{2x}};\]
\[y( - x) = \frac{\sqrt{\sin^{2}( - x)}}{1 + \cos( - 2x)} =\]
\[= \frac{\sqrt{\left( - \sin x \right)^{2}}}{1 + \cos{2x}} =\]
\[= \frac{\sqrt{\sin^{2}x}}{1 + \cos{2x}} = y(x).\]
\[Ответ:\ \ четная.\]
\[3)\ y = \frac{\cos{2x} - x^{2}}{\sin x};\]
\[y( - x) = \frac{\cos( - 2x) - ( - x)^{2}}{\sin( - x)} =\]
\[= \frac{\cos{2x} - x^{2}}{- \sin x} =\]
\[= - \frac{\cos{2x} - x^{2}}{\sin x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[4)\ y = \frac{x^{3} + \sin{2x}}{\cos x};\]
\[y( - x) = \frac{( - x)^{3} + \sin( - 2x)}{\cos( - x)} =\]
\[= \frac{- x^{3} - \sin{2x}}{\cos x} =\]
\[= - \frac{x^{3} + \sin{2x}}{\cos x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[5)\ y = 3^{\cos x};\]
\[y( - x) = 3^{\cos( - x)} = 3^{\cos x} = y(x).\]
\[Ответ:\ \ четная.\]
\[6)\ y = x\left| \sin x \right| \bullet \sin^{3}x;\]
\[y( - x) = - x \bullet \left| \sin( - x) \right| \bullet \sin^{3}( - x) =\]
\[= - x \bullet \left| - \sin x \right| \bullet \left( - \sin^{3}x \right) =\]
\[= x\left| \sin x \right| \bullet \sin^{3}x = y(x).\]
\(Ответ:\ \ четная\text{.\ }\)