\[\boxed{\mathbf{702}\mathbf{.}}\]
\[1)\ y = \cos x - 1;\]
\[y(x + 2\pi) = \cos(x + 2\pi) - 1 =\]
\[= \cos x - 1 = y(x);\]
\[2)\ y = \sin x + 1;\]
\[y(x + 2\pi) = \sin(x + 2\pi) + 1 =\]
\[= \sin x + 1 = y(x);\]
\[3)\ y = 3\sin x;\]
\[y(x + 2\pi) = 3\sin(x + 2\pi) =\]
\[= 3\sin x = y(x);\]
\[4)\ y = \frac{\cos x}{2};\]
\[y(x + 2\pi) = \frac{\cos(x + 2\pi)}{2} =\]
\[= \frac{\cos x}{2} = y(x);\]
\[5)\ y = \sin\left( x - \frac{\pi}{4} \right);\]
\[y(x + 2\pi) = \sin\left( x + 2\pi - \frac{\pi}{4} \right) =\]
\[= \sin\left( 2\pi + \left( x - \frac{\pi}{4} \right) \right) =\]
\[= \sin\left( x - \frac{\pi}{4} \right) = y(x);\]
\[6)\ y = \cos\left( x + \frac{2\pi}{3} \right);\]
\[y(x + 2\pi) = \cos\left( x + 2\pi + \frac{2\pi}{3} \right) =\]
\[= \cos\left( 2\pi + \left( x + \frac{2\pi}{3} \right) \right) =\]
\[= \cos\left( x + \frac{2\pi}{3} \right) = y(x).\]