Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 701

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 701

\[\boxed{\mathbf{701}\mathbf{.}}\]

\[1)\ y = \sin x + x;\]

\[y( - x) = \sin( - x) - x =\]

\[= - \sin x - x =\]

\[= - \left( \sin x + x \right) = - y(x);\]

\[Ответ:\ \ нечетная.\]

\[2)\ y = \cos\left( x - \frac{\pi}{2} \right) - x^{2} =\]

\[= \cos\left( \frac{\pi}{2} - x \right) - x^{2} = \sin x - x^{2};\]

\[y( - x) = \sin( - x) - ( - x)^{2} =\]

\[= - \sin x - x^{2};\]

\[Ответ:\ \ ни\ четная,\ ни\ нечетная.\]

\[3)\ y = 3 - \cos\left( \frac{\pi}{2} + x \right) \bullet \sin(\pi - x) =\]

\[= 3 + \sin x \bullet \sin x = 3 + \sin^{2}x;\]

\[y( - x) = 3 + \sin^{2}( - x) =\]

\[= 3 + \left( - \sin x \right)^{2} =\]

\[= 3 + \sin^{2}x = y(x);\]

\[Ответ:\ \ четная.\]

\[4)\ y = \frac{1}{2}\cos{2x} \bullet \sin\left( \frac{3\pi}{2} - 2x \right) + 3 =\]

\[= - \frac{1}{2}\cos{2x} \bullet \cos{2x} + 3 =\]

\[= - \frac{1}{2}\cos^{2}{2x} + 3;\]

\[y( - x) = - \frac{1}{2} \bullet \cos^{2}( - 2x) + 3 =\]

\[= - \frac{1}{2} \bullet \cos^{2}{2x} + 3 = y(x);\]

\[Ответ:\ \ четная.\]

\[5)\ y = \frac{\sin x}{x} + \sin x \bullet \cos x =\]

\[= \sin x \bullet \left( \frac{1}{x} + \cos x \right);\]

\[y( - x) = \sin( - x) \bullet \left( \frac{1}{- x} + \cos( - x) \right) =\]

\[= - \sin x \bullet \left( - \frac{1}{x} + \cos x \right);\]

\[Ответ:\ \ ни\ четная,\ ни\ нечетная.\]

\[6)\ y = x^{2} + \frac{1 + \cos x}{2} =\]

\[= x^{2} + \cos^{2}\frac{x}{2};\]

\[y( - x) = ( - x)^{2} + \cos^{2}\left( - \frac{x}{2} \right) =\]

\[= x^{2} + \cos^{2}\frac{x}{2} = y(x);\]

\[Ответ:\ \ четная.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам