\[\boxed{\mathbf{692}\mathbf{.}}\]
\[1)\ y = 1 + \sin x\]
\[- 1 \leq \sin x \leq 1\]
\[0 \leq 1 + \sin x \leq 2.\]
\[Ответ:\ \ E(y) = \lbrack 0;\ 2\rbrack.\]
\[2)\ y = 1 - \cos x\]
\[- 1 \leq \cos x \leq 1\]
\[- 1 \leq - \cos x \leq 1\]
\[0 \leq 1 - \cos x \leq 2.\]
\[Ответ:\ \ E(y) = \lbrack 0;\ 2\rbrack.\]
\[3)\ y = 2\sin x + 3\]
\[- 1 \leq \sin x \leq 1\]
\[- 2 \leq 2\sin x \leq 2\]
\[1 \leq 2\sin x + 3 \leq 5.\]
\[Ответ:\ \ E(y) = \lbrack 1;\ 5\rbrack.\]
\[4)\ y = 1 - 4\cos{2x}\]
\[- 1 \leq \cos{2x} \leq 1\]
\[- 4 \leq - 4\cos{2x} \leq 4\]
\[- 3 \leq 1 - 4\cos{2x} \leq 5.\]
\[Ответ:\ \ E(y) = \lbrack - 3;\ 5\rbrack.\]
\[5)\ y = \sin{2x} \bullet \cos{2x} + 2 =\]
\[= \frac{1}{2}\sin{4x} + 2;\]
\[- 1 \leq \sin{4x} \leq 1\]
\[- \frac{1}{2} \leq \frac{1}{2}\sin{4x} \leq \frac{1}{2}\]
\[\frac{3}{2} \leq \frac{1}{2}\sin{4x} + 2 \leq \frac{5}{2}.\]
\[Ответ:\ \ E(y) = \lbrack 1,5;\ 2,5\rbrack.\]
\[6)\ y = \frac{1}{2}\sin x \bullet \cos x - 1 =\]
\[= \frac{1}{4}\sin{2x} - 1;\]
\[- 1 \leq \sin{2x} \leq 1\]
\[- \frac{1}{4} \leq \frac{1}{4}\sin{2x} \leq \frac{1}{4}\]
\[- \frac{5}{4} \leq \frac{1}{4}\sin{2x} - 1 \leq - \frac{3}{4}.\]
\[Ответ:\ \ E(y) = \lbrack - 1,25;\ - 0,75\rbrack.\]